26 research outputs found

    Oscillation Effects On Neutrinos From The Early Phase Of a Nearby Supernova

    Get PDF
    Neutrinos emitted during stellar core collapse leading to a supernova are primarily of the electron neutrino type at source which may undergo oscillation between flavor eigenstates during propagation to an earth-bound detector. Although the number of neutrinos emitted during the pre-bounce collapse phase is much smaller than that emitted in the post-bounce phase (in which all flavors of neutrinos are emitted), a nearby supernova event may nevertheless register a substantial number of detections from the pre-bounce phase at SuperKamiokande (SK) and the Sudbury Neutrino Observatory (SNO). The calorimetric measurement of the supernova neutrino fluence from this stage via the charge current and neutral current detection channels in SNO and the corresponding distortion of detected spectrum in SK over the no-oscillation spectrum, can probe information about neutrino mass difference and mixing which are illustrated here in terms of two- and three-flavor oscillation models

    Discussion on a possible neutrino detector located in India

    Get PDF
    We have identified some important and worthwhile physics opportunitites with a possible neutrino detector located in India. Particular emphasis is placed on the geographical advantage with a stress on the complimentary aspects with respect to other neutrino detectors already in operation.Comment: 9 pages; arXiv copy of published proceedings contributio

    Chandra's tryst with SN 1995N

    Full text link
    We present the spectroscopic and imaging analysis of a type IIn supernova SN 1995N observed with the Chandra X-ray observatory on 2004 March 27. We compare the spectrum obtained from our Chandra observation with that of the previous observation with ASCA in 1998. We find the presence of Neon lines in the Chandra spectrum that were not reported in the ASCA observation. We see no evidence of Iron in both epochs. The observed absorption column depth indicates an extra component over and above the galactic absorption component and is possibly due to a cool dense shell between the reverse-shock and the contact discontinuity in the ejecta. The ASCA and the ROSAT observations suggested a non-linear behavior of the X-ray light curve. However, with the higher spatial resolution and sensitivity of Chandra, we separate out many nearby sources in the supernova field-of-view that had additionally contributed to the supernova flux due to the large Point Spread Function of the ASCA. Taking out the contribution of those nearby sources, we find that the light curves are consistent with a linear decline profile. We consider the light curve in the high energy band separately. We discuss our results in the context of models of nucleosynthesis and the interaction of the shock waves with the circumstellar medium in core collapse supernovae.Comment: 35 pages, 12 figures, accepted for publication in Astrophysical Journa

    Type IIP Supernova SN 2004et: A Multi-Wavelength Study in X-Ray, Optical and Radio

    Full text link
    We present X-ray, broad band optical and low frequency radio observations of the bright type IIP supernova SN 2004et. The \cxo observed the supernova at three epochs, and the optical coverage spans a period of \sim 470 days since explosion. The X-ray emission softens with time, and we characterise the X-ray luminosity evolution as \Lx \propto t^{-0.4}. We use the observed X-ray luminosity to estimate a mass-loss rate for the progenitor star of \sim \ee{2}{-6} M_\odot \mathrm{yr}^{-1}. The optical light curve shows a pronounced plateau lasting for about 110 days. Temporal evolution of photospheric radius and color temperature during the plateau phase is determined by making black body fits. We estimate the ejected mass of 56^{56}Ni to be 0.06 ±\pm 0.03 M_\odot. Using the expressions of Litvinova & Nad\"{e}zhin (1985) we estimate an explosion energy of (0.98 ±\pm 0.25) ×1051\times 10^{51} erg. We also present a single epoch radio observation of SN 2004et. We compare this with the predictions of the model proposed by Chevalier et al. (2006). These multi-wavelength studies suggest a main sequence progenitor mass of \sim 20 M_\odot for SN 2004et.Comment: 13 Figures, Accepted for Publication in MNRA

    Results from an extensive simultaneous broadband campaign on the underluminous active nucleus M81*: further evidence for mass-scaling accretion in black holes

    Full text link
    We present the results of a broadband simultaneous campaign on the nearby low-luminosity active galactic nucleus M81*. From February through August 2005, we observed M81* five times using the Chandra X-ray Observatory with the High-Energy Transmission Grating Spectrometer, complemented by ground-based observations with the Giant Meterwave Radio Telescope, the Very Large Array and Very Large Baseline Array, the Plateau de Bure Interferometer at IRAM, the Submillimeter Array and Lick Observatory. We discuss how the resulting spectra vary over short and longer timescales compared to previous results, especially in the X-rays where this is the first ever longer-term campaign at spatial resolution high enough to nearly isolate the nucleus (17pc). We compare the spectrum to our Galactic center weakly active nucleus Sgr A*, which has undergone similar campaigns, as well as to weakly accreting X-ray binaries in the context of outflow-dominated models. In agreement with recent results suggesting that the physics of weakly-accreting black holes scales predictably with mass, we find that the exact same model which successfully describes hard state X-ray binaries applies to M81*, with very similar physical parameters.Comment: 58 pages (preprint version), 22 figures, accepted for publication in the Astrophysical Journa

    A MISSING-LINK IN THE SUPERNOVA-GRB CONNECTION: THE CASE OF SN 2012ap

    Get PDF
    Gamma Ray Bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However supernovae, with heavy ejecta, can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. Yet the ejecta from SN 2009bb was baryon loaded, and in nearly-free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB, but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than a sixth of the fluence from GRB 980425. This shows for the first time that central engines in type Ic supernovae, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.Comment: 8 pages, 5 figures, 1 table, accepted for publication in Ap
    corecore